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Abstract. We present a non-equilibrium phase diagram for a system of sheared particles
showing the regions of the density versus shear-rate parameter space where a solid-like and
fluid phase coexist. The phase coexistence is determined by direct observation of isokinetic
sheared particle simulations; these simulations indicate that there is ade factoGibbs phase rule
for this system. Though the interaction between the particles is purely repulsive, we present
evidence that the shear generates an effective anisotropic interparticle cohesion. There is no
indication of two fluid phases.

1. Introduction

There has been renewed interest in the study of the phase behaviour of simple liquids, as
well as in the study of colloidal particle analogues of these molecular systems (for reviews,
see the articles by Poonet al p 27 and Frenkel and Hansen p 35 of the April 1996 issue
of Physics World, for an important application of this work to protein crystallization, see
Rosenbaumet al 1996). The interest stems from the recent discovery (see the article of Poon
et al cited above, and references therein) that an insufficiently strong attractive interaction
between the particles cannot give rise to two fluid phases. The strength criterion has not
been explored in detail, but currently indicates that a potential depth of roughlykBT and a
width of less than a third of the repulsive size parameter is ‘weakly attractive’ in this sense.

In this paper we present results which show that thenonequilibriumphase separation
which is known to exist for particulate systems with purely repulsive interaction (Erpenbeck
1983, Woodcock 1985) does not exhibit two ‘fluid’ phases. However, the results provide
evidence for an effective attractive interparticle potential. In addition, we confirm that the
phase separation obeys a ‘rule’ equivalent to the Gibbs phase rule for equilibrium systems:
by changing the overall system density it is only possible to change the relative amounts of
the coexisting phases, and not their individual properties.

The model particulate under study is a system of sheared, thermalized hard spheres. It
is specified by the system parameters, includingσ the sphere diameter, and the system-state
parameters, including the shear rateγ̇ . This can model either a simple liquid or a system of
colloidal particles. However, forσ of the order of molecular scales, current computational
resources are inadequate to access shear rates of less than about 1012 Hz, which is so
high as to be unreachable by any known mechanical device. This makes the only realistic
application of the model the prediction of properties of sheared colloidal suspensions, or
perhaps powders (Barneset al 1987). This is a significant difference in philosophy from
most work on sheared particle models (Heyes 1986, Evans and Morriss 1986; a notable
exception is Hess and Loose 1990), and it has several procedural consequences, as will be
discussed in the next section.
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Figure 1. The geometry of the sheared particle system. The
origin of coordinates is at the cube centre, and the flow
velocities on they-faces of the cubes are±x̂γ̇ L

2 , wherex̂
is a unit-vector in thex-direction, andγ̇ is the shear rate.

Section 2 presents details of the model and simulation procedure, section 3 presents
details of our analysis of the data, and section 4 draws our conclusions and points to the
need for further theoretical work on nonequilibrium phase coexistence.

2. Details of the model and simulations

The model particulate under study is completely specified by the system parameters:m

the sphere mass,σ the sphere diameter,N the number of spheres, and the system-state
parameters:V the volume,E0 the kinetic energy, anḋγ the shear rate. In our simulations
of this system, the driving shear is imposed via the usual ‘sliding brick’ boundary conditions
(Lees and Edwards 1972), with the geometry of the simulation cell depicted in figure 1.
The kinetic energy is maintained constant by a variant of the velocity-rescaling (isokinetic)
algorithm (Erpenbeck 1983). This choice of the method of ‘thermostatting’ is the most
significant detail of the model, and the following paragraphs explain it in more detail.

In trying to understand and predict the properties of flowing colloidal suspensions, it
was realized only recently that simulation could perform the ideal experiments which were
not possible in the laboratory (Woodcock 1989). In a rheometer, particles are free to move
(due to shear-enhanced osmotic pressure gradients), and migrate from driving and sensing
surfaces, giving results which are particular to the geometry of the rheometer. In essence,
each rheometer will give a different value for the ‘viscosity’. By imposing a uniform
velocity profile, possible in a simulation, such difficulties may be avoided. In this approach
the simulation cell is to be regarded as providing the constitutive relations (e.g. pressure
or viscosity as a function of density and shear rate) for an individual finite element in a
computational fluid dynamics calculation of the complex flow of the suspension through the
experimental device.

This approach requires the imposition of a uniform rate of shear over the entire
simulation cell, and indeed, for the real experimental systems which we are seeking to
model, typical laboratory Reynolds numbers (102–103) on the scale of the device (1 mm)
point to the flows being laminar on the scale of the simulation cell (about 10 microns) (for
a useful discussion of these concepts, including molecularversuseddy viscosity, see the
article by Frisch and Orszag on p 24 of the January 1990 issue ofPhysics Today). This
should be contrasted with methods which seek to use sheared particles to model simple
fluids (Evans and Morriss 1986), where there is noa priori justification for assuming a
laminar flow on the scale of the simulation cell. In sum, while for simple fluids it is more
appropriate to use a profile unbiased thermostat, for the systems we seek to model it is
essential to use a profile biased thermostat.

Our modification of Erpenbeck’s original algorithm rescales the particle peculiar



A phase diagram for sheared particle models 347

Figure 2. A comparison of the average granular kinetic energyE0 for
a system of 1000 particles at a reduced densityρ† ≡ Nσ 3/V of 0.8 as
a function of reduced shear ratėγ † ≡ γ̇ (mσ 2/E0)

1/2, for the original
thermostatting algorithm of Erpenbeck and the overscaling algorithm.

velocities (i.e. the velocities relative to the mean flow) after every cross-boundary collision,
so that the kinetic energy after the collision is equal to(E0)

2/E′, whereE′ was the kinetic
energy just prior to the cross-boundary collision. Thus, the kinetic energy after rescaling is
usually less thanE0. This serves to keep the average system kinetic energy strictly fixed
at E0 as the shear rate is increased, as shown in figure 2. Also plotted on this figure are
previous results (Turner 1990) using the original algorithm, which rescales the velocities
after every cross-boundary collision so that the kinetic energy is equal toE0. As can be seen
from figure 2, the original algorithm exhibits some residual system heating, which would
introduce a spurious shear-rate dependence into the constitutive relations. Our modified
algorithm shows no such residual heating yet still scales linearly with particle number. We
refer to our algorithm as the overscaling algorithm. With the kinetic energy fixed, the
system-state space of the model, hence its phase diagram, is two-dimensional (volume, or
equivalently density, versus shear rate).

While this model, and especially the thermostatting mechanism, might seem artificial,
it should be noted that it can beanalytically related to more realistic models, e.g. with
dissipation arising from particle inelasticity (Woodcock 1989, Turner and Woodcock 1990),
or hydrodynamic drag (Nicolaides 1996). These analytical relations have been explicitly
verified by simulations in both of the above cases. The model therefore serves as a reference
system for nonequilibrium particulate systems in much the same way that the equilibrium
hard sphere model has for the statistical mechanics of simple liquids (Hoover 1991a, b).
However, it should be noted that the isokinetic algorithm permits some anisotropy to develop
in the kinetic energy and pressure tensors, which may lead to other system inhomogeneitics.

3. Analysis of results

For given values of the system-state parameters the system reaches a steady-state, with
well-defined averages for quantities such as the pressure tensor, and with a well-defined
microstructure. An example of this microstructure is given in figure 3, which represents
a constant-y slice taken through the three-dimensional simulation cell of a steady-state
configuration. The slice, of width roughly two particle diameters, contains in its middle
third (i.e. for z approximately between 4 and 8) two lamellar layers each with triangular
order. In the top and bottom thirds of the slice there is fluid. The high- and low-density
structures seen are stable, lasting for the length of the simulation, some millions of collisions.
This allows us, as explained in more detail below, to determine a phase diagram in analogy
to that for an equilibrium system. This phase diagram is depicted in figure 5. The strong
similarity between this diagram and the(ρ, T ) phase diagram of a simple liquid should be
noted (in particular, see figure 4(c) of the article by Poonet al cited above). The shear rate
is seen to act as an effective inverse temperature, based on the observation that increasing
shear stabilizes the solid-like phase (Barneset al 1987).
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Figure 3. A thin slice (of width roughly two particle
diameters) parallel to the plane of shear through a three-
dimensional steady-state particle configuration, showing
the coexistence of well defined high- and low-density
regions. The overall system density isρ† = 0.8 and the
shear rate iṡγ † = 5.0. Note the well-defined triangular
ordering of the two layers (denoted by full diamonds
and full circles, respectively) in the middle third of the
sample, i.e. forz between 4 and 8.

Figure 4. As with figure 3, showing the coexistence of
well defined high- and low-density regions. The overall
system density isρ† = 0.7 and the shear rate again is
γ̇ † = 5.0. The region of triangular ordering of the
two layers (denoted by full diamonds and full circles,
respectively) occurs near the top of the sample, forz

between 8 and 9.

Figure 5. Lines of constant mean normal pressure in reduced units,P † ≡ Pσ 3/V , and observed
boundaries of the region of two-phase coexistence (full curves) in the reference sheared particle
model defined in the text, as a function of the reduced densityρ† and reduced shear ratėγ †.
The dotted lines are meant to suggest a reasonable extrapolation of the coexistence region to
equilibrium γ̇ † = 0. The equilibrium values of the freezing and melting densities of the hard
sphere fluid are indicated.

Several comments are in order concerning the nature of this microstructure. First,
the layered structure depicted in figure 3 is only one type of ordering seen in sheared
particle systems: it is a precursor phase of a ‘string’ phase where the triangular order of
the layers is lost, and in addition, plug-like flows can occur (Hess and Loose 1990). In
our simulations, the triangular order of the layers was always preserved, and observation
of system evolution over short timescales indicated that these layers were sliding past
each other in zig-zag fashion. Second, while it was at one time suspected that ordering
was merely a consequence of assuming a profile-biased thermostat (Evans and Morriss
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1986), subsequent explicit observations of ordering in simulations using a profile-unbiased
thermostat (Hess and Loose 1990) have upheld the physical relevance of shear-induced
ordering. The reason for this has since become clear: while the profile-biased thermostat
does provide a mechanism for stabilizing the ordered phase, the assumption in the work of
Evans and Morriss that the stresses needed to support phase coexistencemust derive from
the thermostatwas incorrect. This is seen in retrospect to have been ana priori assumption
that was never validated, and in fact disproved by the simulations of Hess and Loose. These
stresses are present in any system of sheared particles. It is thus seen that theexistence
of ordering is independent of the thermostat; however, it is reasonable to expect that the
locus of ordering in the density-shear rate plane can be significantly altered by changing
the thermostating mechanism. Furthermore, it has not been unambiguously determined that
the typeof ordering is the same for different thermostats. Clearly, even this, one of the first
systems to be studied via nonequilibrium simulation methods (Hoover 1991a), is still far
from being fully understood. Finally, we note that there is some arbitrariness in the choice
of how best to display the ordering; we have found that projections of varying-width slices
such as the example depicted in figure 3, with additional depth information conveyed by
using colour (not easily reproduced in this journal), is an effective way of revealing the
microstructure. In addition, this choice of visualization provides a quick way to implement
our criteria for determining the densities of the coexisting phases, to be discussed below.

When faced with a seemingly ‘thermodynamic’ phenomenon such as the phase
separation seen in figure 3, but where there is no underlying theoretical criterion for
determining phase coexistence, the best that can be done is to examine the extent to which
the thermodynamic analogy applies. We have discovered that perhaps the most fundamental
property of thermodynamic phase coexistence, the Gibbs phase rule (see e.g. Atkins 1994),
has an analogue in this nonequilibrium system. Our analysis, to be explained in detail in
the following paragraphs was briefly as follows: the solid lines in figure 5 delineating the
two-phase region were determined by direct observation of many individual configurations
at each state point. This revealed configurations which were characterized by well-defined
regions of high and low density, with a narrow interface between them (as in figure 3).
Furthermore, all of the system-state points lying within the two-phase region displayed
coexisting phases in this manner, with system-state points having identical shear rates but
different overall densities givingequal valuesfor the two coexisting densities. This is
simply a direct observation of Gibbs’s phase rule.

In implementing the method outlined above, it is of prime importance to construct
qualitative criteria for what is meant by the interface, and for the procedures employed
to calculate the densities of each phase. Given these two criteria, the rest of the analysis
follows simply. We have chosen criteria which erred on the side of strictness, and for this
reason were not able to assign the presence of an interface to some configurations which a
purely visual inspection might say were ordered. However, even without those additional
configurations, evidence for thede factoexistence of a Gibbs phase rule is strong.

We defined the presence of an interface as follows: by observation of individual layers
using our thin slice visualizations, we required each layer have a transition from triangular
ordering to disorder (this latter defined by the presence of at least 40% of Voronoi cells
having a number of sides other than 6) which occurred for a constant value ofz (i.e.
was horizontal as in figure 3) to within one particle diameter. If then the other layers
in the sample had similar transitions at the same value ofz, there was deemed to be
a sharp interface in the system. That these sharp interfaces indeed existed, it may be
argued in retrospect from figure 5 that the shear rates involved translate into quite low
temperatures, so any fluctuations of the interface should be strongly suppressed. The
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strictness of this definition caused two types of configurations to be disregarded from our
analysis: configurations at low shear rates, belowγ̇ † = 2.5, where the densities of fluid
and solid phase became too high and too similar to rely on our Voronoi analysis, and
configurations at shear rates above 2.5 but just within the borders of the two-phase region,
where the amount of the smaller of the two phases was insufficient to apply the analysis.
The configuration displayed in figure 4 gives an example of the difficulties involved. Here
the layered phase is barely three particle diameters thick, which renders the subsequent
density analysis difficult.

Having identified those configurations which obeyed our definition of possessing a sharp
interface, we could then go on to measure the density of each phase by discarding the regions
of the sample withz-values within half a particle diameter of the interfacial position, and
finding the number of particles in the remaining regions. Normally in a simulation, one
would repeat this analysis for several widely separated times; however, as noted above,
the position of the interfaces in simulations did not change over millions of collisions.
We chose to improve the density analysis as follows: instead of calculating the average
density over the entire region occupied by a phase, we used a ‘window’ of varying height
in the z-direction, thereby verifying that the density of each phase was uniform over the
region occupied by that phase. For example, the reduced density of the system depicted
in figure 3 isρ†(≡ Nσ 3/V ) = 0.878 over the region 4.5 < z < 6.5, it is 0.868 over the
region 4.5 < z < 5.5, and it is 0.861 over the region 5.0 < z < 7.0. The average density
is ρ

†
s(γ̇

† = 5.0) = 0.87(1). This small statistical variation verifies that the properties of
each phase are uniform throughout. The example given is typical for the solid phase, but
the accuracy of the method drops for the liquid phase. For the sample of figure 3 the
liquid phase has a density of 0.602 over the range 8.0 < z < 9.5, 0.587 over the range
9.0 < z < 10.5 and 0.624 over the range 0< z < 2.0, giving an overall average for this
value of the shear rate ofρ†

1(γ̇
† = 5.0) = 0.60(2). Overall, we conservatively estimate

the accuracy of the method (by looking at the spread of densities obtained as above) at
1ρ† = 0.02. This is roughly the width of the solid line depicted in figure 5.

The configuration depicted in figure 4 may also be subjected to our criteria. This
configuration has the same shear rate as that of figure 3 but a different overall system
density. The value of the solid phase density in this sample isρ

†
s(γ̇

† = 5.0) = 0.87(1) and
the liquid phase density isρ†

1(γ̇
† = 5.0) = 0.59(2). This confirms our claim that changing

the overall density of the system at a particular shear rate merely changes the amounts of
coexisting liquid and solid phases, and not their individual properties.

The pressures indicated in figure 5 were calculated with the virial theorem; in addition,
a kinetic theory of expression was calculated for purposes of comparison. The agreement
between the two expressions was to two significant figures for all points outside the region
of two-phase coexistence. The disagreement in regions involving a solid-like phase is to be
expected, as system averages, especially velocity distributions, become anisotropic.

4. Conclusions

The importance of our analysis is that it demonstrates that there is ade factoGibbs phase
rule for this system: changing the overall density of a system within the two-phase region
cannot change the properties of the coexisting phases, only their relative proportions.

In making a more detailed comparison of figure 5 to the equilibrium phase diagram of
a simple liquid, several features should be noted. First, the isobars have a positive slope
in the fluid region. This is simply the phenomenon of dilatancy, which is well understood
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(Barneset al 1987). Its connection with the absence of two fluid phases remains to be
explored. The second point to note is that for low shear rates the isobars exhibit tie-lines
which roughly correspond to the boundaries of the two-phase region. Thus, for small
shear rates, the pressure may form part of a valid effective nonequilibrium thermodynamic
potential. This would be a useful tool in the study of the order–order phase transitions
which are expected to occur in these systems. It would also allow us to verify in more
detail the understanding (Woodcock 1985) that the phase coexistence seen here is a shear
perturbation of the equilibrium freezing transition. This understanding is strongly supported
by an extrapolation back to zero shear of the pressure of the coexisting phases obtained
from figure 5 (the extrapolation of the phase boundaries themselves, i.e. the dotted lines in
figure 5, is less convincing). A linear extrapolation of the coexisting pressures gives the
equilibrium coexistence pressure asP

†
c = 13.2(8), which is in excellent agreement with the

known value of that for the hard sphere freezing transition,P
†
f = 12.72. Thus, the phase

coexistence is intimately related to the equilibrium freezing transition.
For large shear rates the isobars are nowhere horizontal, and any approach based on

a nonequilibrium thermodynamic potential seems certain to fail; there is at present no
analytical or numerical method, other than the direct observation which we have performed,
which can predict the two-phase coexistence seen in figure 5.

The third point to be noted concerns the shape of the left and right boundaries of the
two-phase region. The leftmost boundary illustrates our claim that there is only one fluid
phase in this nonequilibrium system. However, the rightmost boundary indicates that there
are effective attractive forces between these hard sphere particles. For purely repulsive
interaction in equilibrium, the two-phase boundaries parallel to each other (Hooveret al
1970), whereas in figure 5 the density of the solid-like phase in coexistence with the fluid
phase increases with increasing shear rate at high shear rates. This is evidence for a weak
attractive force between the particles, induced by shear.

We have observed phase separation for other nonequilibrium systems, in particular a
system of particles undergoing uniaxial compaction. We conjecture that the extensive runs
currently underway will also reveal a nonequilibrium phase diagram, though it is expected
not to be similar to figure 5; the analytical methods developed previously (Woodcock
1989, Nicolaides 1996, Turner and Woodcock 1990) may be extended to attempt to give a
correspondence between the two-phase diagrams.

This work has brought to the fore the need to develop and implement a workable method
for establishing the phase coexistence of nonequilibrium systems. Thede factoexistence of
a Gibbs phase rule demonstrated above indicates that such a method must exist. The rich
phase structure seen in the study of complex liquids and colloids flowing under shear stress
demonstrated that such a method is required.
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